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Abstract

Active Shape Models (ASMs), a knowledge-based segmen-
tation algorithm developed by Cootes and Taylor [1, 2],
have become a standard and popular method for detect-
ing structures in medical images. In ASMs – and various
comparable approaches – the model of the object’s shape
and of its gray-level variations is based the assumption of
linear distributions. In this work, we explore a new way
to model the gray-level appearance of the objects, using a
k-nearest-neighbors (kNN ) classifier and a set of selected
features for each location and resolution of the Active Shape
Model. The construction of thekNN classifier and the se-
lection of features from training images is fully automatic.
We compare our approach with the standard ASMs on syn-
thetic data and in four medical segmentation tasks. In all
cases, the new method produces significantly better results
(p < 0.001).

1 Introduction

Segmentation is an important topic in the field of biomed-
ical image analysis. Dedicated solutions for the segmenta-
tion of a wide range of objects in a wide range of medi-
cal images have been proposed. Most of these algorithms
are the result of identifying separate tasks and applying en-
gineering principles to find appropriate solutions, as was
noted by Duncan and Ayache in a recent review [3]. Al-
though such approaches have been successful in several ar-
eas, there is a clear need for generic segmentation schemes
that can be trained with examples. Such schemes acquire a
model of the shape of the object to be segmented and the
gray-level appearance of the object in the image and pro-
vide a mechanism to fit these models to new images, thus
producing a segmentation.

A variety of such schemes have been proposed, see for
instance [4, 5, 6, 7, 8, 9, 10]. One popular method is Active

Shape Models1 (ASMs) put forward by Cootes and Taylor
[1] and popular in medical image segmentation [11, 12, 13,
6, 14, 15, 16].

The ASMs method uses a statistical model of the shape
of the object, derived from landmark points2 on the object
contour, and a statistical model of the profiles perpendicu-
lar to the object contour, around each landmark. Both the
shape and the appearance model are linear: they are derived
from the covariance matrix. It is not unlikely that more so-
phisticated models will improve the overall performance of
the scheme. This has been noted by several authors and
more complex alternatives for the shape model have been
proposed, for instance by Cootes and Taylor [17] and re-
cently by Duta and Jain [18]. In this work we focus on the
appearance model. Cootes and Taylor propose to construct
the covariance matrix of the normalized first derivatives of
the profile around each landmark, and to move landmarks in
the image using the Mahalanobis distance. There is no par-
ticular reason why this should be an optimal choice for any
application. Therefore we propose a new scheme that au-
tomatically selects local image features for each landmark
that are optimally able to classify a position in the image as
either inside or outside the object. As in the original ASMs
method, this appearance model will be constructed for mul-
tiple resolutions to enable coarse-to-fine fitting.

In this paper the extension of ASMs will be tested and
compared with the original scheme in four medical seg-
mentation tasks: segmenting the left and right lung fields in
chest radiographs and segmenting the cerebellum and cor-
pus callosum in 2D slices from MRI brain studies.

1The term “active shape model” picked by Cootes and Taylor for their
segmentation algorithm is a somewhat awkward choice. It is used in the
literature in a general sense, as a shape model that includes shape varia-
tions. In our case it refers to the complete method (and not just the shape
model) put forward in [1] and [2]. The latter reference is a technical report
that describes the ASM method in detail; our implementation is based on
this description.

2In the literature the term landmark often denotes anatomical landmark
points, or points with recognizable geometric properties, but in this work
it is a sample point along the object contour.
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2 Theory

In this section we first briefly review ASMs, and subse-
quently describe our extensions. In principle, the scheme
can be used innD, but in this work we give a 2D formula-
tion.

2.1 Shape model

An object is described byn landmark points, (manually) de-
termined in a set ofs training images. The landmark points
(x1, y1), . . . (xn, yn) are stacked in shape vectors

x = (x1, y1, . . . , xn, yn)T . (1)

These shapes can be aligned by translating, rotating and
scaling them so as to minimize the sum of squared distances
between the landmark points, using an iterative scheme
known as Procrustes analysis [19, 2]. However, this align-
ment can also be omitted, in which case a shape model is
built that can generate only shapes with a size, position
and orientation consistent with the supplied examples. The
mean shape is computed,

x̄ =
1
s

s∑
i=1

xi, (2)

the covariance

S =
1

s− 1

s∑
i=1

(xi − x̄)(xi − x̄)T , (3)

and the eigensystem ofS. The eigenvectors corresponding
to the t largest eigenvaluesλi (the principal components)
are retained in a matrixΦ = (φ1|φ2| . . . |φt). A shape can
now be approximated by

x ≈ x̄ + Φb (4)

whereb is a vector oft elements containing the model pa-
rameters, computed by

b = ΦT (x− x̄). (5)

Such shape models are called point distribution models
[20]. When fitting the model to a set of points, the values of
b are constrained to lie within the range±m

√
λi, with m

usually between 2 and 3.
The numbert of eigenvalues to retain is chosen so as to

explain a certain proportionfv of the variance in the train-
ing shapes, usually between 0.90 and 0.995. The desired
number of modes is given by the smallestt for which

t∑
i=1

λi ≥ fv
2n∑
i=1

λi. (6)

2.2 Gray-level appearance model

The gray-level appearance model that describes the typi-
cal image structure around each landmark is obtained from
pixel profiles, sampled (using linear interpolation) around
each landmark, perpendicular to the contour3.

On either sidek pixels are sampled using a fixed step
size, which gives profiles of length2k + 1. Cootes and
Taylor propose to use the normalized first derivatives of
these profiles to build the gray-level appearance model. The
derivatives are computed using finite differences between
the(j − 1)th and the(j + 1)th point. The normalization is
such that the sum of absolute values of the elements in the
derivative profile is 1.

Denoting these normalized derivative profiles as
g1, . . . ,gs, the mean profilēg and the covariance matrixSg
are computed for each landmark. This allows for the com-
putation of the Mahalanobis distance between a new profile
gi and the profile model

f(gi) = (gi − ḡ) S−1
g (gi − ḡ). (7)

Minimizing the Mahalanobis distancef(gi) is equiva-
lent to maximizing the probability thatgi originates from
the distribution{g1, . . . ,gs}.

2.3 Multi-resolution framework

These profile models, given bȳg andSg, are constructed for
multiple resolutions. The number of resolutions is denoted
by Lmax. The finest resolution uses the original image and
a step size of 1 pixel when sampling the profiles. The next
resolution is the image observed at scaleσ = 1 and a step
size of 2 pixels. For subsequent levelsσ → 2σ and the step
size is also doubled4.

2.4 Optimization algorithm

Shapes are fitted in an iterative manner, starting from the
mean shape. Each landmark is moved along the direction
perpendicular to the contour tons positions on either side,
evaluating a total of2ns + 1 positions. The step size is
2(i−1) pixels for theith resolution level, the same as was
used during construction of the model. The landmark is
put at the position with the lowest Mahalanobis distance.
After moving all landmarks, the shape model is fitted to the
displaced points, yielding an updated segmentation. This is
repeatedNmax times at each resolution, in a coarse-to-fine
fashion5.

3This requires a notion of connectivity between the landmark points
from which the perpendicular direction can be computed.

4We do not subsample the images, as proposed by Cootes and Taylor.
5We always performNmax iterations, contrary to Cootes and Taylor

who move to a finer resolution if a convergence criterion is reached before
theNmaxth iteration.
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(a) (b) (c) (d) (e) (f) (g)

Figure 1: (a) A generic house image, resolution 200× 200 pixels. New house images are generated by adding a displacement
(dx, dy) to each corner point wheredx anddy are randomly selected from the interval (-20,+20) pixels, and subsequently
translating the distorted house by(dx, dy) wheredx anddy are randomly selected from the interval (-35,+35) pixels. (b) An
example of a generated house image. (c) Texture image (resolution 300× 300 pixels) used to fill the outside of the house,
using a random offset. (d) Texture image (resolution 300× 300 pixels) used to fill the inside of the house, using a random
offset. Both texture images are taken from the Brodatz set and histogram equalized. (e) An example of a generated textured
house image. (f) Segmenting this image with the ASMs scheme leads to poor results; (g) but new approach with selected
local features produces a reasonable result.

2.5 New gray-level appearance model based
on selected local features

The aim of the appearance model is to be able to move
the landmark points to better locations during optimization,
along a profile perpendicular to the object contour. The best
location is the one for which everything on one side of the
profile is outside the object, and everything on the other side
is inside of it6. We propose a method to estimate the proba-
bility that a location is inside/outside the object, optimized
for the area around each landmark and each working reso-
lution separately. We base this classification on local im-
age features obtained by feature selection and a non-linear
kNN-classifier, instead of using the fixed choice of the nor-
malized first derivative profiles and the Mahalanobis dis-
tance.

Gaussian derivatives will be used as image filters. The
rationale behind this choice is that these derivatives opti-
mally describe local image structure since they make up the
local jet, the Taylor expansion of the image at each location
[21]. Features are extracted for each location by taking the
first few moments of the local distribution of image intensi-
ties (the histogram) around each location. The most suitable
choice for a window function to compute this histogram, is
a Gaussian, since every other choice induces spurious res-
olution [22]. The size of this window function is charac-
terized by a second scale parameterα. The construction of
local histograms, extracted from a Gaussian aperture func-
tion, is called alocally orderless imageand discussed in
depth in [23]. The idea of using the moments of histograms
of responses of an image to a bank of filters is a standard
technique in texture analysis, see for instance [24].

6This assumes that the thickness of the object, in the direction perpen-
dicular to a landmark, is larger than half the length of the profile. We will
return to this point in the Discussion.

This leaves us with several parameters to vary: the order
of the Taylor expansion (i.e. the number of filters in the fil-
ter bank), the number of scalesσ to consider, the number of
scalesα to use for the local window, and the number of mo-
mentsm to extract from the local histograms. Our strategy
is to compute an extensive set of features and use feature
selection techniques to find the best set of features.

After a range of initial experiments we decided to use
only first and second moments (m = 1, 2), all derivatives
up to second order (L, Lx, Ly, Lxx, Lyy, Lxy), five in-
ner scales (σ = 0.5, 1, 2, 4, 8 pixels), and a fixed relation
between the inner scaleσ and the histogram extentα of
α = 2σ. Hence the total number of feature images is
2× 6× 5 = 60.

Obviously the image structure is different for each land-
mark, but the positions that are evaluated are also different
for each resolution. Therefore we will select a distinct set of
features for each landmarkandfor each resolution, amount-
ing tonLmax feature sets7.

From each training image and for each landmark a
square grid ofNgrid×Ngrid points is defined withNgrid an
odd integer and the landmark point at the center of the grid.
The spacing is2(i−1) pixels for theith resolution level.

For each landmark and for each resolution level, a fea-
ture vector with 60 elements is sampled atN2

grid points. The
output of each feature vector is either inside (1) or outside
(0) the object8. The set of training images is divided in two
sets of equal size, a training set and a validation set. AkNN
classifier withkNN neighbors and weighted voting is used
in which each neighbor votes with a weight ofexp(−d2),

7In the original ASMs the same strategy is followed:nLmax mean
profilesḡ and covariance matricesSg as they appear in Eq. (7) are com-
puted: for each landmark, at each resolution.

8The landmark points themselves are (arbitrarily) considered to be in-
side the objects.
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with d is the Euclidean distance from sample to neighbor in
the feature space.

Sequential feature forward selection [25, 26] is used to
find a feature set of at mostfmax features. This set is subse-
quently trimmed by sequential feature backward selection,
that is, features are removed if that improves performance9.
The resulting set is the “optimal” set of features that will be
used during segmentation.

When the model is fitted to an input image, the scheme
starts by computing the 60 feature images. Instead of sam-
pling the normalized derivative profiles, the optimal feature
set at each position along the profile is fed into akNN clas-
sifier to determine the probability that this pixel is inside the
object. The objective functionf(g) to be minimized is the
sum of absolute differences between the expected probabil-
ity (0 or 1 for points outside or inside the object, respec-
tively) and the predicted probability, for each point along
the profile:

f(g) =
−1∑
i=−k

gi +
+k∑
i=0

(1− gi), (8)

where the index along the profileg, that is oriented from the
outside to the inside of the object, runs from−k to +k. This
metric replaces the Mahalanobis distance from Eq. (7).

3 Example

Consider the segmentation of a simple object that is filled
with a certain texture and placed on a background of a dif-
ferent texture. This is a particular example of a segmenta-
tion task for which the original ASMs scheme is not suited.
Because of the randomness in the texture, the pixel profiles
that cross the object border will not be very different from
those that do not cross the border.

We created some sample data and segmented these with
both schemes, the original method and the new method.
This is described in Figure 1. Both methods were trained
on 45 images, for parameter settings see the next section.
The point to make is that the original ASMs cannot deal
with such textural object boundaries, while the new method
produces reasonable results.

4 Experiments

4.1 Materials

Four different segmentation experiments have been per-
formed with two types of data. The images and objects used

9This procedure of forward selection followed by backward selection
is almost as effective as optimal ‘floating’ feature selection schemes [26]

in the experiments, that are labelled A to D, are briefly de-
scribed in Table 1.

The image data for Experiments A and B were standard
PA chest radiographs selected from a tuberculosis screen-
ing program. The data contained both normal and abnormal
cases of patients of 16 years and older. The images were
taken with a mobile Electrodelca (Oldelft BV, Delft, The
Netherlands). The tube voltage was 117 kV and the im-
ages were printed on 10 by 10 cm film and digitized with a
Lumisys 100 scanner (Lumisys, Inc., Sunnyvale, CA) and
subsampled to 256× 256 pixels. Two observers have inde-
pendently segmented the right and left lung field.

For Experiments C and D, a collection of 90 MRI slices
of the brain has been used, in which the corpus callosum
and the cerebellum have been segmented. The images and
segmentations have been made available by the University
of Iowa Hospitals and Clinics and have also been used by
Brejl and Sonka in [10]. The resolution is 320× 256 pix-
els, 0.7 mm per pixel, obtained by interpolating the original
volumetric data acquired with 1.5 mm thick coronal slices
with 0.7 by 0.7 mm resolution.

The objects in the images were annotated by a number
of fixedlandmarks and a closed contour between those fixed
points from which a number of equidistant landmark points
were sampled. Table 1 lists the number of fixed and total
landmarks.

4.2 Methods

For each parameter of ASMs, a fixed setting was selected
that yielded good performance, after initial pilot experi-
ments. For the example images from the previous sec-
tion and for the lung shapes, no shape alignment was per-
formed (this improved performance) and a shape model was
constructed in which 99.5% of the variance was explained
(fv = 0.995). For the brain structures, shape alignment was
used (in this case better results were obtained with the use of
alignment) and a shape model explaining 98% of the vari-
ance (fv = 0.98) was constructed. The fact thatfv is lower
for the aligned shapes is because alignment reduces the to-
tal amount shape variability and, thus, a higher proportion
of the variation in the data can be attributed to noise.

The other settings were 4 levels of resolution (Lmax =
4), 10 iterations per level (Nmax = 10), profiles of length 5
(k = 2) and evaluation of 9 positions per iteration (ns = 4).
When fitting the shape model to the displaced landmarks,
each mode was constrained within 2 times the standard de-
viation (m = 2.0). For the extended ASMs, at most 10
features were selected for each landmark and each resolu-
tion (fmax = 10). Training data were selected from 5 by 5
neighborhoods around each landmark (Ngrid = 5). In the
kNN classifier, 5 neighbors were used (kNN = 5).

To compare different segmentations, the following
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experiment object image description resolution images landmarks
test training fixed total

A right lung field standard PA chest radiographs 256× 256 115 115 3 40
B left lung field standard PA chest radiographs 256× 256 115 115 3 40
C corpus callosum 2D slices of MRI brain studies 320× 256 45 45 3 50
D cerebellum 2D slices of MRI brain studies 320× 256 45 45 7 50

Table 1: Description of the objects and images used in the four segmentation experiments. The experiments are labelled A
to D. There are two different image databases: chest radiographs used in Experiments A and B, and MRI brain data used in
experiments C and D.

“overlap” measureΩ was used

Ω =
TP

TP+ FP+ FN
, (9)

where TP stands for true positive (the area correctly classi-
fied as object), FP for false positive (area incorrectly clas-
sified as object), and FN for false negative (area incorrectly
classified as background). WhenΩ = 1 the overlap is com-
plete and the result is perfect; forΩ = 0 there is no overlap
at all between the detected and true object. This measure
more closely reflects the idea of a good segmentation than
the average distance between the true and detected land-
mark location, because the latter is not sensitive to shifts
of the landmarks along the contour.

In all experiments the performance when fitting the
shape directly to the true landmarks (cf. Eq. (5)) was also
computed because it indicates an upper bound for both the
original method and the method with local features. For Ex-
periments A and B manual segmentations by a second ob-
server were available. ThereforeΩ for the second observer
can be compared withΩ for the automatic methods.

5 Results

The results of all experiments are given in Table 2. Note
that fitting the shape model minimizes the distance between
the predicted landmark position and the true landmark po-
sition; it does not necessarily optimizeΩ. Therefore it is
possible that an ASM scheme produces a set of model pa-
rametersb for whichΩ is higher thanΩ for fitting the shape
model directly. This actually occurred in a few cases. An-
other practical measure of the optimal performance any au-
tomatic segmentation method that is trained with examples
can achieve, is the variation between observers. This mea-
sure is given for Experiments A and B, where the medianΩ
of the ASM method with local features is close to median
Ω of a second human observer.

In all cases ASMs with local features produced signifi-
cantly higherΩ values than the original scheme (p < 0.001
in a paired t-Test for all experiments). This is also clear

Experiment A: Right lung field µ± σ (median)
ASMs 0.882± 0.074 (0.902)
ASMs with local features 0.929± 0.026 (0.933)
Fit of shape model 0.948± 0.030 (0.955)
Second observer 0.945± 0.017 (0.948)

Experiment B: Left lung field µ± σ (median)
ASMs 0.861± 0.109 (0.891)
ASMs with local features 0.887± 0.114 (0.924)
Fit of shape model 0.942± 0.090 (0.955)
Second observer 0.934± 0.021 (0.938)

Experiment C: Corpus callosumµ± σ (median)
ASMs 0.617± 0.206 (0.535)
ASMs with local features 0.805± 0.093 (0.837)
Fit of shape model 0.887± 0.052 (0.906)

Experiment D: Cerebellum µ± σ (median)
ASMs 0.870± 0.078 (0.904)
ASMs with local features 0.910± 0.058 (0.927)
Fit of shape model 0.950± 0.014 (0.950)

Table 2: Mean, standard deviation and median results of the
overlap measureΩ for all experiments. The original ASM
scheme is compared with the method with the best local
features and the result of directly fitting the shape model to
the true landmark positions (cf. Eq. (5)). In Experiments A
and B the mean, standard deviation and median results of a
second human operator are also given.

from Figure 2 which shows scatter plots for each experi-
ment. In these plots, points which are above the diagonal
line indicate images for which the segmentation with local
features is better than the result of the original scheme. It
is apparent that a substantial improvement is achieved for
Experiment A, C, and D. Only for Experiment B, the left
lung fields, there is a considerable number of cases where
the original method has better performance. Figure 3 shows
a typical result for each experiment.
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Right lung fields Left lung fields Cerebellum Corpus callosum

Figure 2: Scatter plots of each segmentation experiment. The overlap measureΩ for the original ASM scheme is plotted
againstΩ for the ASM method based on an optimal set of local features for each segmented image.

6 Discussion and conclusion

The fact that a set of features is selected foreachlandmark
andeachresolution separately is an important aspect of the
new method. It turned out that the selected set of features
varied considerably from experiment to experiment, land-
mark to landmark and resolution to resolution. More fea-
ture images can be used, by using higher moments, more
(higher-order) derivatives and by relaxing the fixed relation
betweenσ andα.

A more elaborate criterion for evaluating new landmark
positions could be as follows. Currently landmarks are
moved to those locations where the profile values are closest
to 0 for points outside the object and closest to 1 for points
inside the object. In practice the optimal profiles may be
different. Especially if the object is very thin and the fitting
occurs at a coarse resolution level, the innermost points of
the profile may cross the border on the other side of the ob-
ject! The actual profiles can be extracted from the training
set and used to construct a model based on their mean and
covariance matrices, that can steer the landmark displace-
ment, in the same way as the original ASM scheme. An-
other enhancement would be to take into account the struc-
ture along the profile, instead of using local pixel classifica-
tion for each position along the profile independently. This
may improve performance. Consider a set of images, half
show a black object on a white background, and the other
half a white object on a black background. With local im-
age features, it is impossible to classify locations as inside
or outside the object. But a set of features measured along
the profile can easily distinguish correct profiles, with an
intensity jump at exactly the landmark location, from incor-
rect profiles, with no intensity jump or an intensity jump at
a different location.

The example results from section 3 indicate that the pro-
posed refined ASMs method may be especially useful to
segment textured objects from textured backgrounds. An

example could be segmentation in ultrasound images, but
this remains to be tested. However, the method requires the
texture of object and background to be different; otherwise
- as in camouflaged objects - local classification is impossi-
ble and difficulties will arise. In that case an analysis of the
complete profile would seem to be a preferable approach.

The original ASM scheme is an extremely fast segmenta-
tion method, yielding result in tenths of a second on regular
PC hardware and 2D images. The new method is consider-
ably more computationally expensive. However, all the fea-
ture selection can be done off-line. We used an optimized
kNN classifier [27], and other, faster, classifiers could be
used instead. Substantial speed improvements could be ob-
tained by using pyramid-like schemes in which filters of
large scale would be used on subsampled versions of the
input images. Our current implementation of the ASMs
method with local features requires twenty times as much
computation time as the original ASMs scheme, and takes
4.1 seconds to complete on a 500 MHz Pentium III PC with
the given parameter settings and images of 256 by 256 pix-
els.

In conclusion we have shown that active shape mod-
els, which provide a fast, effective, automatic, model-based
method for segmentation problems in medical imaging, can
be significantly improved through the use of an adaptive
gray-level appearance model based on a non-linear classi-
fier trained with an optimal set of local image features.
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input image ASMs local features ASMs 2nd observer
with true shape Ω = 0.884 Ω = 0.945 Ω = 0.952

input image ASMs local features ASMs 2nd observer
with true shape Ω = 0.873 Ω = 0.935 Ω = 0.961

true shape ASMs local features ASMs
Ω = 0.846 Ω = 0.858

true shape ASMs local features ASMs
Ω = 0.679 Ω = 0.909

Figure 3: Example results for right lung field (Experiment A, top row), the left lung field (Experiment B, second row), the
corpus callosum (Experiment C, third row) and the cerebellum (Experiment D, bottom row) segmentation. Segmentations
are given by the thick white line. Below each segmentationΩ is given.
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